If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4c-10c^2=0
a = -10; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-10)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-10}=\frac{-8}{-20} =2/5 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-10}=\frac{0}{-20} =0 $
| X*y=600 | | -20=1-7v | | 0.4x-15=0.625x-16 | | -21=-3x-15 | | 8=-4x+32 | | -3x-32=40 | | 7x6=30 | | 3x/x+6=1/3 | | 35/42=30/x | | 5x+330=10 | | 3(n-30)=40 | | 138=10x+18 | | 5A+2A+1b=100-54 | | 55=-u/5 | | 4*o=16 | | 2(4t-5)=6(2t+3)-5 | | 7x-63=3x-11 | | 1.25x+39.99-(1.50x+29.99)=0 | | .5^x=0.002 | | 7(x+6)+4=-3(×-8)-1 | | 7(4w+8)/3=-6 | | 20=2+x/3 | | 3c^2-12c+8=0 | | 3x+25=5x+30 | | 4(f-9)=-20 | | 2=2+3z | | 3i=3 | | 2y+40-3y+51=180 | | 2y+40+-3y+51=180 | | 2x+50=-8x+198 | | 7v-5=16 | | 7(3w+9)/4=-11 |